
Introducing the StataStan interface for fast,

complex Bayesian modeling using Stan

Robert L Grant1, Bob Carpenter2, Daniel Furr3, and Andrew
Gelman2

1Faculty of Health, Social Care and Education, Kingston University
and St George’s, University of London, Cranmer Terrace, London

SW17 0RE, United Kingdom
2Columbia University

3University of California at Berkeley

December 5, 2016

Abstract

We present StataStan, an interface that allows simulation-based
Bayesian inference in Stata via calls to Stan, the flexible open-source
Bayesian inference engine. Stan is written in C++, and Stata users can
use the commands stan and windowsmonitor to run Stan programs
from within Stata We provide a brief overview of Bayesian algorithms,
details of the commands, which are available from SSC, considerations
for users who are new to Stan, and a simple example. Stan uses a dif-
ferent algorithm to bayesmh, BUGS, JAGS, SAS and MLwiN, which
provides considerable improvements in efficiency and speed. A com-
panion paper gives an extended comparison of StataStan and bayesmh

in the context of item-response theory models.

Keywords: Bayesian; bayesmh; interface; shell commands; Stan.

1 Introduction

Stata users have long been able to seamlessly access other software special-
ising in Bayesian analysis, thanks to Stata’s provision for the user to write
arbitrary information to ASCII text files, and to send commands to the op-
erating system. This allowed for programs such as runmlwin and wb to send
data and code to MLwiN and WinBUGS respectively, and then collect the
results and display them inside Stata and make them available for further
calculation and graphing [1,2]. Since version 14 was released in 2015, Stata

1

Robert Grant
Published in Stata Journal (2017); 17(2): 330–42. (doi: 10.1177/1536867x1701700205)
(c) CC-BY-NC-ND-4.0 Sage

users have been able to utilise a native implementation of Bayesian simula-
tion algorithms via the bayesmh command [3]. However, bayesmh is focussed
on regression models and, outside that framework, users must define their
own likelihood evaluators.

The day after version 14’s release, StataStan was published online [4].
StataStan is an umbrella term for all commands and programs necessary
to interface with Stan from Stata. Stan is an open-source, collaboratively-
built software project to implement a newer, faster and more stable algo-
rithm (Hamiltonian Monte Carlo) for Bayesian modelling than the algo-
rithms (random walk Metropolis-Hastings and the Gibbs Sampler) imple-
mented in BUGS, JAGS, SAS, MLwiN and bayesmh. Stan has been applied
to a wide range of complex statistical models including time series, impu-
tation, mixture models, meta-analysis, cluster analysis, Gaussian processes
and item-response theory. These extend beyond the current (Stata 14.1)
capability of bayesmh, which is explicitly for regression [3]. The functional-
ity of Stan and advantages of the algorithm are described in our companion
paper [5]. This paper gives a brief overview of Hamiltonian Monte Carlo
in intuitive terms, then sets out the syntax of the commands, and finally
presents a worked example.

2 Hamiltonian Monte Carlo

All Bayesian methods make estimates and inference by evaluating posterior
distributions, combinations of likelihood based on data and a model with
prior distributions representing uncertainty about parameters of the model
before the data were known [3]. Different practitioners take the prior to
mean different concepts, in the same way that ’uncertainty’ or ’probability’
are not rigorously defined concepts, despite decades of hard work by statisti-
cians and philosophers of science. Regardless of the interpretation, Bayesian
methods differ from frequentist in that they allow probability statements to
be made about any unknown value, and not just those that represent eter-
nally replicable random sampling.

Textbook examples often start with algebraically tractable posterior dis-
tributions, but in practice this is generally either infeasible or too time-
consuming and prone to human error to be worthwhile. Instead, software
allows the analyst to run one or more Markov chains of pseudorandom val-
ues which converge to a stationary distribution equivalent to draws from the
joint posterior distribution of all the parameters of interest. From a large
enough number of these draws, estimation and inference can be done em-
pirically. The older algorithms, random walk Metropolis-Hastings and the
Gibbs Sampler, take random steps through parameter space, and accept or
reject the new location on the basis of its posterior probability.

This can work well under some circumstances but under others can re-

2

quire very large numbers of draws before they accurately represent the pos-
terior distribution (convergence). Problems like this commonly arise when
parameters are correlated (as, for example the intercept and slope of a bi-
variate linear regression is with only a few data), when priors are not ideal
matches for the likelihood (a subtle topic beyond the scope of this paper
but discussed in Bayesian textbooks [6]), or when initial values are poor
guesses. Hamiltonian Monte Carlo addresses these issues by using Hamil-
ton’s equations of motion with periodic random impulses [7]. Exploration
of the posterior probability is then analogous to a particle moving in a force
field (picture a beachball rolling in the hollow between sand dunes, with oc-
casional random kicks – gravity is the force providing the Hamiltonian mo-
tion), and as the joint posterior distribution guides movement to the region
of highest posterior probability, the problems of sampling using random steps
disappear. Even chains with poor initial values can still reveal the whole
posterior distribution relatively quickly [7]. However, for a computer to per-
form this imitation of life, computationally expensive numerical integration
and differentiation are required, but the lifting of the problems associated
with random walk Metropolis-Hastings and Gibbs more than compensates
for this. The No U-Turn Sampler (NUTS) is the algorithm implemented in
Stan [8], which helps by automatically tuning the parameters of Hamilto-
nian Monte Carlo, achieving nearly optimal integration time in recent tests
using CmdStan [9].

In the companion paper, we present a comparison of the efficiency of
StataStan alongside bayesmh for an item-response model [5].

3 The stan and windowsmonitor commands

3.1 Objectives and development

Building on the history of linking Stata to WinBUGS [2], we sought to pro-
vide a single Stata command which would dispatch a specified Stan model
code along with data. Because Stata can easily issue operating system com-
mands, we use this to run the command-line implementation of Stan (Cmd-
Stan) and display summary results inside Stata. This is the approach also
taken by the Stan interfaces from Matlab and Julia. CmdStan has to be
installed before using StataStan but this is relatively straightforward with
instructions on the Stan website, mc-stan.org.

We believe that Stata users who are becoming familiar with Bayesian
techniques will find StataStan a usefully flexible, stable and fast tool. Also,
people who already use Stata and Stan separately will find it helpful to
keep everything in one workflow, because most people find it easier to work
with one piece of software than to switch among them (and easier to main-
tain quality control). This allows data processing, simple analysis, complex
modelling, graphics and writing out reports all in one place.

3

One unexpected problem we encountered was that Windows does not
make its standard output on the command line available in such a way that
Stata can display it in the results window until the external program has
finished execution. In the case of complex Bayesian models which can take
hours to run, this would be unacceptable. So, we wrote a small companion
program called windowsmonitor which displays command-line output close
to real time. windowsmonitor may provide a useful alternative to shell

and winexec in other settings too.

3.2 The stan command for Stata

stan specifies what data are to be sent to CmdStan, with options control-
ling its settings and additional requirements such as sampling diagnostics or
posterior modes. Data are passed to CmdStan in a text file, and outputs
are returned similarly. These files are temporarily created in the CmdStan
directory and then moved to the working directory; there is an option to re-
tain them all, otherwise those that are rarely needed afterwards are deleted.
Users should be mindful that any existing files in these locations with these
names may be overwritten. A model has to be stored in its own file with
extension .stan, and we discuss below different ways to achieve this.

3.3 Syntax of stan

stan varlist [if in] [, options]

3.3.1 Options

datafile(filename) specifies the name of a text file where stan will write
the data on their way to Stan. This is done in the format used by R / S-plus
and BUGS, for example with the auto dataset,

stan mpg,...

would write:
mpg=c(...)

The default datafile name is statastan data.R
modelfile(filename) specifies the name of a text file, which must have

the extension .stan, containing the Stan model. If this file already exists,
the model is read from there, or it can be written into it using one of the
methods detailed below under ”Specifying the Stan model”. The default is
statastan model.stan

inline instructs Stata to read the .stan model from a comment block
inside the do-file (see below under ’Specifying the Stan model’ for further
discussion of modelfile, inline and thisfile).

thisfile(filename) specifies the name (and path, if required) of the
current do-file; this is an option if inline has been specified (see below under

4

’Specifying the Stan model’ for further discussion of modelfile, inline and
thisfile).

initsfile(filename) specifies the name of a text file in R / S-plus format
containing initial values. Because Stan is far less sensitive to initial values
than software using older algorithms, we do not at present provide any
mechanism like the datafile option to write this file from inside Stata.

load instructs Stata to read in the resulting draws as its current dataset
diagnose, if specified, will run Stan’s diagnostics and display them after

sampling, to examine whether the algorithm has run successfully.
outputfile(filename) provides the name for the text file into which

CmdStan will write its outputs; the default is output.csv
chainfile(filename) provides the name for a comma-separated values

(CSV) format file which will contain the draws from CmdStan; this is the
same as outputfile but extra information is removed so it can be read into
Stata using import delimited; the default is statastan chains.csv

mode runs Stan’s optimization to find posterior modes, and displays the
results after sampling; it will also write the output into modesfile (see below)

modesfile(filename) provides the name of a text file to hold output from
CmdStan’s estimation of modes; the default is modes.csv

winlogfile(filename) provides the name of a temporary file to hold
Windows output (see windowsmonitor); windowsmonitor will display this
Stata’s results window so there is no need we know of to change this from
the default, which is winlog.txt

seed(integer) provides an integer psuedorandom number generator seed
for Stan

warmup(integer) specifies the number of warmup draws, which are dis-
carded from output and summaries

iter(integer) specifies the number of iterations (draws) to retain after
warmup

thin(integer) specifies how much thinning of draws: if thin is set to n,
Stan will retain one out of every n draws in output files and use the thinned
draws for summaries; default is 1 (no thinning).

chains(integer) determines how many chains to run, in parallel if pos-
sible (regardless of the Stata flavor installed).

skipmissing will remove missing data observation-wise (on a cell-by-
cell basis inside each column) before sending to Stan. This would apply
if you want to send a series of vectors of different sizes by making these
appear as ’variables’ in your Stata data. This could be useful in the context
of multilevel models, with smaller vectors of cluster-level data. It is not a
natural way to think of Stata data so should be used with caution because
it will apply to all the variables in varlist.

matrices(string) provides a list of matrices to send to Stan, or if set to
”all”, it will send all current matrices. These are written into the datafile
as two-dimensional arrays.

5

globals(string) provides a list of global macros to send to Stan, or ”all”
to send all current global macros. These are written into the datafile as
scalars.

Care should be taken not to write a string value as this will probably
cause an error from CmdStan.

keepfiles instructs stan to keep all files produced along the way, oth-
erwise, the model file, C++ file, executable file, chains file and (if produced)
modes file will be retained in the working directory.

stepsize(integer) sets the stepsize for Hamiltonian Monte Carlo, default
1 (see the Stan manual for more detail [4])

stepsizejitter(integer) sets the stepsize jitter for Hamiltonian Monte
Carlo, default 0 (see the Stan manual for more detail [4])

4 Specifying the Stan model

There are at least three ways of specifying the Stan model. Firstly, a .stan file
can be written externally, for example in a text editor, and then named with
the modelfile option. This has the disadvantage that updates to the analysis
may require synchronised changes in the do-file and the model file. However,
we recommend this as the starting point for new users of StataStan, because
it avoids any bugs in writing and reading text files, and allows one to begin
immediately using examples from the Stan manual and website. A second
option is to include the code inside a comment block in the do-file. If the
inline and thisfile options are used, Stata will read the text contents of
thisfile, identify the comment block that begins (on the line following the /*

symbol) with the word data:

/*

data{

int <lower=0> N;

int <lower=0,upper=1> y[N];

}

parameters {

real <lower=0,upper=1> theta;

}

model {

theta ~ beta (1,1);

y ~ bernoulli(theta);

}

*/

and write the contents of the block to the .stan file specified in modelfile.
The third option is to include the model code in the do-file and have

Stata loop over its lines and write it to the modelfile:

tempname writemodel

file open ‘writemodel ’ using "mystanmodel.stan", ///

write replace

6

#delimit ;

foreach line in

"data { "

" int <lower=0> N; "

" int <lower=0,upper=1> y[N];"

"} "

"parameters {"

" real <lower=0,upper=1> theta;"

"} "

"model {"

" theta ~ beta (1,1);"

" y ~ bernoulli(theta);"

"}"

{;

#delimit cr

file write ‘writemodel ’ "‘line ’" _n

}

file close ‘writemodel ’

stan y, modelfile (" mystanmodel.stan") ///

cmd(" $cmdstandir ") globals ("N")

This has the advantage that all Stata and Stan code is in one file, but
does not rely on naming or finding the do-file.

At present, the inline approaches (options two and three above) do not
accommodate multiple blocks of code but we intend to add this capability.

4.1 The windowsmonitor program

windowsmonitor is a wrapper extending the ability of shell. It will be
called by stan under Windows only, and it will return an error message if
it is used in Mac or Linux computers. It intercepts the stdout stream (text
that is displayed on the screen for command line programs) and prints it
inside Stata. This is done by diverting stdout to a text file, checking that file
every 2 seconds for new content and displaying that in Stata if it finds any.
This continues until it receives a message that it is finished (in the form of
a final line of output: ”Finished!”), which is added automatically. The only
consideration for the user is to avoid using windowsmonitor to carry out any
task that could write a single line ”Finished!” for any reason, because this
will terminate the display inside Stata prematurely. If this is unavoidable,
it is relatively simple to amend the signal word ”Finished!” in the source
code.

4.1.1 Syntax of windowsmonitor

windowsmonitor, command() [options]

7

4.1.2 Options

command(string) contains the Windows command line code to be sent for ex-
ecution waitsecs(integer) specifies the number of seconds to wait for output
to appear before giving up; default 20. winlogfile(filename) specifies the
file into which stdout should be diverted; default winlog.txt

windowsmonitor will also create a file called wmbatch.bat. If this sur-
vives execution, it can safely be deleted later.

5 Considerations for newcomers to Stan

Newcomers are strongly advised to work through some of the examples in
the Stan manual before attempting serious applications. The Stan user must
specify the type (such as integer or real number) as data or parameters.
This allows Stan to make calculations efficient and helps with checking for
inadvertent errors at compile time. Stan will translate the model to C++,
which is itself a ’typed’ language. For the most part, the Stata user need not
be concerned with this, other than the obvious choice when writing the Stan
code, but one potential pitfall is when reading in data from non-native file
formats into Stata and sending it via stan. Floating-point precision means
that what the human reads may not match what the computer stores, and
this may lead to a ”type mismatch” error message from CmdStan.

The statistics that are reported by CmdStan, and hence displayed by
stan, are: the mean of draws from the posterior, the Monte Carlo Standard
Error (MCSE) representing the uncertainty in the results arising from a fi-
nite number of draws, the standard deviation, 5th, 50th and 95th centiles
of the draws, the number of effective independent samples (N Eff, which
accounts for autocorrelation in the chains) and number of effective indepen-
dent samples obtained per second (N Eff/s), and a measure of convergence
(R hat). The calculation of these measures is set out in [6]. N Eff and R hat
are best assessed across multiple chains, so we advise users to run at least
4 chains as a general rule. stan can run parallel chains on multicore com-
puters, even if Stata/MP is not installed, so most modern laptops can run
4 chains simultaneously. In the authors’ experience, this runs in about half
the time of serial chains.

Beyond these reported statistics, the value of loading the draws from the
posterior distributions is that bespoke derived values can be calculated and
summarised by the user inside Stata, to provide decision theoretic outputs.
To give an example from health economics, a meta-analysis in Stan providing
inference on effectiveness of alternative drugs can be loaded into Stata and
then be combined with constant costs to derive a new cost-effectiveness vari-
able, allowing probability statements about whether the cost-effectiveness
exceeds a willingness-to-pay threshold. Another important benefit of work-
ing with the posterior draws is that the covariance structure among the pa-

8

rameters is preserved, while the tabulated summaries provide only marginal
inferences.

Another consideration is that the number of available CPU cores needs
to be specified when installing CmdStan itself, and the StataStan chains()

option can only parallelise up to this number [10].
Stan model code allows for vectorised statements such as
y ∼ bernoulli(theta);

instead of
for (n in 1:N) { y[n] ∼ bernoulli(theta); }.

Both can be used in Stan, but the vectorised version is generally faster in
execution.

6 Example

All the models set out in the Stan manual and website can be directly fitted
using StataStan, including many that are not possible in bayesmh. We
can use StataStan for a very simple example to estimate the probability of
success θ in a Bernoulli process

Pr(yi) = θ, 1 ≤ i ≤ 10, i ∈ N
when we have ten data: eight failures and two successes. We will apply a flat
prior distribution over [0, 1], either by explicitly specifying it or by omitting
it because Stan uses uniform priors as default, provided that bounds on the
parameter have been specified. The corresponding bayesmh command is:

bayesmh y, likelihood(dbernoulli({theta})) prior({theta},beta(1,
1))

The Stan code for this example is contained in the examples folder inside
CmdStan.

data {

int <lower=0> N;

int <lower=0,upper=1> y[N];

}

parameters {

real <lower=0,upper=1> theta;

}

model {

theta ~ beta (1,1);

y ~ bernoulli(theta);

}

Note that the code is arranged in blocks of: data, parameters and model.
Other types of block can also be included, described in full in the Stan
manual. Each object, whether data or parameter, used in the model must
be declared with its type and any constraints before it can be used. Like
BUGS and JAGS, the assignment operator < − is used to calculate a value
and store it in the object named on the left-hand side, while the ∼ operator
has two functions. In the line

9

theta ∼ beta(1,1);

we are specifying a prior distribution (because theta is already declared as
a parameter), and in the line

y[n] ∼ bernoulli(theta);

we are incrementing the log-probability by the likelihood contribution of one
observation according to the Bernoulli probability given the current estimate
of theta.

Having specified this model, we can make the data:

clear

set obs 10

gen y=0

replace y=1 in 2

replace y=1 in 10

and then call stan:

quietly count

global N=r(N)

global cmdstandir "/ path_to/CmdStan"

stan y, modelfile (" bernoulli.stan") cmd(" $cmdstandir ")

globals ("N")

10

The first output to be displayed concerns translating the model to C++ and then compiling that. Compiling can be
time-consuming, but does not have to be done again unless the model changes.

--- Translating Stan model to C++ code ---

bin\stanc.exe bernoulli.stan --o=bernoulli.hpp

Model name=bernoulli_model

Input file=bernoulli.stan

Output file=bernoulli.hpp

--- Linking C++ model ---

g++ -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -DBOOST_DISABLE_ASSERTS -I src -I s

> tan_2 .9.0/ src -isystem stan_2 .9.0/ lib/stan_math_2 .9.0/ -isystem stan_2 .9.0/ lib/stan

> _math_2 .9.0/ lib/eigen_3 .2.4 -isystem stan_2 .9.0/ lib/stan_math_2 .9.0/ lib/boost_1 .58.

> 0 -Wall -pipe -DEIGEN_NO_DEBUG -m32 -Wno -unused -function -Wno -uninitialized -O3

> -o bernoulli.exe src/cmdstan/main.cpp -include bernoulli.hpp -static -libgcc -stati

> c-libstdc ++

After compilation is finished, we will see some settings for CmdStan:

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

...

Then, we see the iterations appear, followed by a total time to do the sampling.

...

Iteration: 1600 / 2000 [80\%] (Sampling)

11

Iteration: 1700 / 2000 [85\%] (Sampling)

Iteration: 1800 / 2000 [90\%] (Sampling)

Iteration: 1900 / 2000 [95\%] (Sampling)

Iteration: 2000 / 2000 [100\%] (Sampling)

#

Elapsed Time: 0.019 seconds (Warm -up)

0.045 seconds (Sampling)

0.064 seconds (Total)

#

This is followed by a summary of the parameters

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat

theta 0.24 6.7e-003 1.2e-001 0.082 0.23 0.46 300 6673 1.0e+000

Samples were drawn using hmc with nuts.

For each parameter , N_Eff is a crude measure of effective sample size ,

and R_hat is the potential scale reduction factor on split chains (at

convergence , R_hat =1).

So, this shows us that the posterior mean for θ was 0.24 (pulled upward from the maximum likelihood estimate by the
flat prior and the small dataset). If mode was specified, we will then see the posterior mode:

Log -probability at maximum: -5.004020214080811

| Posterior

Parameter | Mode

----------+----------

theta | .200004

which is directly comparable (with a flat prior) to the maximum likelihood estimate, 0.2.
If we specified diagnose, we will see corresponding output; the reader is referred to the Stan manual for details on this:

12

TEST GRADIENT MODE

Log probability = -7.10591

param idx value model finite diff error

0 -0.557247 -1.37022 -1.37022 -1.66588e-010

Finally, if we specified load, we will see some Stata-generated summary, including the 95% credible interval:

variable | N mean sd se(mean) min p1 p5

-------------+--

theta | 1000 .2485084 .1121162 .0035454 .019246 .0477189 .0814933

--

variable | p25 p50 p75 p95 p99

-------------+--

theta | .1628 .244064 .3222845 .4458295 .5513045

--

95\% CI for theta: .0656607497483492 to .4934002541005615

which is very similar to the approximate confidence interval:

. cii proportions 10 2, wilson

------ Wilson ------

Variable | Obs Proportion Std. Err. [95\% Conf. Interval]

-------------+---

| 10 .2 .1264911 .0566822 .5098375

13

We also find our data replaced with variables called theta (which con-
tains draws for the parameter of that name), lp , accept stat , stepsize ,
treedepth , n leapfrog and n divergent , all of which are created by Cmd-
Stan to track progress of the algorithm, and can be safely deleted unless
needed for methodological investigations. The theta variable, containing
the draws from the posterior, can then be used for graphics or further infer-
ence.

7 Conclusion

Stan continues to develop rapidly, with one major project being the inclusion
of Riemann manifold Hamiltonian Monte Carlo which will provide further
significant improvements in speed and stability [11]. StataStan can readily
track this by adding new options which are passed to future versions of
CmdStan.

Stan and all its interfaces have been made possible by enthusiastic con-
tributions from developers around the world, co-ordinated by a core team.
We encourage all interested Stata users to visit the website and to become
involved there through reporting issues and suggesting improvements [4].

8 Acknowledgements

We thank the Institute of Education Sciences for partial support of this
work. We are also grateful to users who have tested StataStan and pro-
vided feedback, as well as John Thompson of the University of Leicester
and Charles Opondo of the University of Oxford for suggesting ways of in-
line model specification.

References

[1] George Leckie & Chris Charlton. runmlwin - A Program to Run the
MLwiN Multilevel Modelling Software from within Stata. Journal
of Statistical Software (2013); 52 (11): 1–40.

[2] John Thompson. WinBUGS from Stata.
http://www2.le.ac.uk/departments/health-sciences/research/gen-
epi/Progs/winbugs-from-stata (Accessed 17 March 2016)

[3] StataCorp. [BAYES] manual, version 14.

[4] Stan Development Team. Stan Modeling Language Users Guide and
Reference Manual, Version 2.11.0, 2016 http://mc-stan.org

[5] NOTE: PLEASE INSERT CROSS-REFERENCE TO THE COMPAN-
ION PAPER

14

[6] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki
Vehtari & Donald B Rubin. Bayesian Data Analysis, 3rd edition.
CRC Press, 2013

[7] Radford Neal. ”MCMC Using Hamiltonian Dynamics”. In Handbook
of Markov Chain Monte Carlo, eds Steve Brooks, Andrew Gelman,
Galin Jones, Xiao-Li Meng. CRC Press, 2011.

[8] Matthew Hoffman & Andrew Gelman. The no-U-turn sampler: Adap-
tively Setting Path Lengths in Hamiltonian Monte Carlo. Journal
of Machine Learning Research (2014); 15: 1593–1623.

[9] Michael Betancourt. Identifying the Optimal Integration
Time in Hamiltonian Monte Carlo. ArXiv:1601.00225v1.
http://arxiv.org/abs/1601.00225 (accessed 30 March 2016)

[10] Stan Development Team. CmdStan Interface User’s Guide, Version
2.11.0, 2016 http://mc-stan.org

[11] Mark Girolami & Ben Calderhead. Riemann Manifold Langevin and
Hamiltonian Monte Carlo Methods. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) (2011); 73(2): 123–214.

15

